JYOTI NIVAS COLLEGE AUTONOMOUS SYLLABUS FOR 2018 BATCH AND THEREAFTER

Programme: B.Sc.

Semester: VI

GENETICS PAPER VII

ADVANCED GENETICS

Course Code: 18VIGT7

No. of Hours: 45

COURSE OBJECTIVES:

- To give students some perspective about how advances in the field of genetics is revolutionizing the study of biological sciences and opening up wider scope for research and career options
- 2. To define and understand statistical measures of heritability and inheritance of polygenic traits
- 3. To understand developmental and behavioural genetics and immunogenetics
- 4. To initiate the students to Project work related to the subject and recorded as a dissertation

LEARNING OUTCOMES:

- The students will be able to appreciate the genetics of development in both plants and animals and the genetic effect on behavior.
- Will be able grasp the effect of polygenes on the phenotypic expression of a trait and the effect of quantitative genetics on selection of plants and animals for breeding purposes to improve the trait
- Will be able to appreciate the genetics of immunity and its role in organ transplant
- They developed the skill to design, conduct and write a dissertation on related genetic topics and face a viva-voce that helped them in their further studies

UNIT – I DEVELOPMENTAL GENETICS	09 HRS
Basic concepts of embryogeny	01 HRS
Role of nuclear transplantation in development of Xenopus, Acetabularia	01 HR
Tissue specific DNA methylation in differential gene expression during deve Differential expression of haemoglobin genes	elopment Eg. 01 HR
Genetics of development in Drosophila – early development, maternal genes, s genes; homeotic genes	segmentation 04 HRS
Arabidopsis- Homeotic genes in genetic control of flower morphogenesis	02 HRS
UNIT – II EVOLUTIONARY AND BEHAVIOURAL GENETICS	11 HRS
Darwinism, Mutation Theory, Neo Darwinism	02 HRS
Hardy-Weinberg's principle and its application. Problems	01 HRS

Factors affecting genetic equilibrium - Mutation, Selection, Migration, and g Founder Principle, Inbreeding, Fitness	enetic drift - 02 HRS
Speciation: Modes, Reproductive isolating mechanisms	02 HRS
Evolution at molecular level - Amino acid sequence	01 HRS
Behavioural Genetics:	01 HR

Genetic basis of behavior: Introduction, approaches to genetic analysis of behavioural traits (twin studies, association studies, linkage analysis)

Nurturing behavior in mice, nest cleaning and courtship behavior in honeybees, Biological rhythms in Drosophila, song learning in finches 02 HRS

UNIT – III BIOMETRICAL GENETICS 11 HRS

Quantitative characters: Concept of continuous variation in quantitative or economic characters in crop plants and animals; types of quantitative traits **03 HRS**

Quantitative inheritance: Features of polygenic traits in relation to oligogenic traits. Assumptions of polygenic inheritance.

Inheritance of kernel color in wheat, ear length in maize and skin colour in human. Transgressive inheritance. Problems 04 HRS

Statistical tools: Mean, standard deviation, variance, correlation Components of polygenic variability: Phenotypic, genotypic and environmental variability. Additive variance, dominance variance and epistatic variance. 01 HR

Heritability: broad and narrow sense, response to selection.

Problems relating to variance and heritability	02 HRS
Genetic advance; Quantitative trait loci	01 HR
UNIT – IV IMMUNOGENETICS	07 HRS
Immunity- Non-specific and Specific, T and B lymphocytes	01 HR
Inherited immunodeficiency:	
Eg: X- linked agammaglobulinaemia.	01 HR
Major Histocompatibility Complex (MHC) - Class I and Class II HLA disease	
associations	03 HRS
Transplantation – Different types; Graft histocompatibility; Graft rejection;	
Mechanism of graft rejection – Sensitization phase and Effector phase; Graf diseases (Bone marrow transplant and Kidney transplant)	t-versus-host 02 HRS
UNIT – V CANCER GENETICS	07 HRS

02 HRS

Regulation of mitotic cell cycle in eukaryotes

Properties of cancer cells.Tumor suppressor's genes (Rb and p53 genes),Proto-oncogenes (myc and ras genes), viral oncogenes 04 HRS

Chromosomal abnormalities associated with the specific malignancies – CML, APL, ALL, ANLL and CLL 01 HR

III B.Sc. Genetics -VI Semester PRACTICAL VII

DURATION: 3 HOURS /UNIT

NO. OF UNITS: 15

1. Project Work:

Project work to be done on a topic related to the subject and recorded as a dissertation/ Study visit of a Genetics research institute and recorded as a project report **5 UNITS**

2. Gene frequency problems

4 UNITS

3. Biometrical Problems:

Quantitative inheritance: Problems on kernel color in wheat, ear length in maize, body size in poultry & rabbits.

Genetic problems on polygenic variability

Genetic problems on heritability, genetic advance and correlation	4 UNITS
Practical tests/repetition	2 UNITS
Note: 13 Practical + 2 units for practical tests/repetition	

REFERENCES:

- 1. DROSOPHILA: GENETICS MEETS BEHAVIOR www.ncbi.nlm.nih.gov/pubmed/11715043
- 2. ELEMENTS OF PLANT BREEDING, Phundhan Singh (2001), 2nd edition, Kalyani Publishers, New Delhi.
- 3. EVOLUTION, Strickberger M.W. (1990), Jones and Bartlett, Boston.
- 4. EVOLUTIONARY GENETICS, Smith Maynard J. (1989), Oxford University Press.
- 5. GENES IN POPULATION, Spiess E. (1989), 2nd edition, Wiley-Liss, New York.
- 6. EVOLUTIONARY BIOLOGY, Futuyma D. (1997), 3rd edition, Sinauer Associates, Sunderland.
- 7. GENETICS AND ANALYSIS OF QUANTITATIVE TRAITS, Lynch M. & Walsh B. (1997), Sinauer Associates, Sunderland.
- 8. INTRODUCTION TO QUANTITATIVE GENETICS, Falconer D. (1995), 4th edition, Longman, London.
- 9. NATURAL SELECTION DOMAINS, LEVELS AND CHALLENGES, Williams G. (1992), Oxford University Press, New York.
- 10. PRINCIPLES OF GENOME ANALYSIS, Primrose S.B. (1995), Blackwell, Oxford.
- 11. PRINCIPLES OF GENETICS, Gardener et al, (1991), 3rd edition, John Wiley & Sons Publications,

New York.

12. THE CAUSES OF MOLECULAR EVOLUTION, Gillespie J. (1994), Oxford University Press,

New York.