JYOTI NIVAS COLLEGE AUTONOMOUS SYLLABUS FOR 2018 BATCH AND THEREAFTER

Programme: B.Sc.

Semester: III

GENETICS PAPER III

CYTOGENETICS

Course Code: 18IIIGT3

No. of Hours: 60

COURSE OBJECTIVES:

- To learn chromosome structure and special types of chromosomes
- To understand the process of recombination of genes
- To learn and construct chromosome maps

LEARNING OUTCOMES:

- Students acquire the knowledge of prokaryotic and eukaryotic genome
- Students are able to construct chromosome maps and understand linkage of genes

UNIT I PHYSICAL BASIS OF INHERITANCE	17 HRS
Chromosome theory of inheritance	1 HR
Prokaryotic chromosome	1 HR
Eukaryotic chromosome – Macro-molecular organization of chromosome – p secondary constrictions, satellite bodies, centromere and telomere	orimary and 3 HRS
Types of chromosomes.	1 HR
Heterochromatin and euchromatin and its significance.	2 HRS
Ultra structure of chromosome – Du Praw's folded fibre model, nucleosome nucleosome structure	model and 2 HRS
Chemical composition of chromosome	1 HR
Banding techniques – G, C, Q, R and Ag-NOR (Nucleolar organizing region)	1 HR
Karyotype and idiogram (Human and Drosophila); Digital and Spectral	
karyotyping	2 HRS
Special types of chromosomes : Polytene chromosomes – Salivary gland chromosophila, Lampbrush chromosome in amphibian oocytes and B chromosomes	mosomes in 2 HRS
A brief account of Paris nomenclature	1 HR
UNIT II LINKAGE AND CROSSING OVER	14 HRS
Linkage:	2 HRS

Concept of linkage - linkage groups, Bateson and Punnett's experiment, corepulsion hypothesis; cis-trans arrangement	oupling and	
Theories of linkage – differential multiplication theory and chromosome theory	1 HR	
Types of linkage – complete and incomplete linkage with examples from Dro Maize	osophila and 2 HRS	
Crossing over:		
Types of crossing over – Germinal (twin spot and yellow spot) and Somatic cross	ing	
over	2 HRS	
Cytological theories of crossing over	2 HRS	
Molecular mechanism of crossing over and recombination – Single break and		
Double strand break models	2 HRS	
Cytological evidence of crossing over – Stern's experiment in Drosophila, McClintock's experiment in Maize; crossing over in Drosophila; absence of crossing over in male Drosophila 2 HRS		
Frequency and percentage of crossing over. Factors affecting crossing over – as temperature and X-rays	ge, distance, 1 HR	
UNIT III CHROMOSOME MAPPING	9 HRS	
Steps involved in chromosome mapping:	4 HR	
Determination of percent crossover values, two point cross, three point cross		
Determination of map distance between gene loci, sequence of gene loci		
Map construction in Maize and Drosophila		
Interference and coincidence	1 HR	
Tetrad analysis in Neurospora	1 HR	
Genetic problems related to mapping	3HR	
UNIT IV CHROMOSOMAL ABERRATIONS	14 HRS	
Numerical:		
Euploidy (monoploidy, haploidy and polyploidy)	1 HR	
Polyploidy – autopolyploidy and allopolyploidy and their significance in polploidy		
in plants	2 HR	
Aneuploidy – monosomy, nullisomy and trisomy	2 HR	
Structural:		

Deletions, duplications, Robertsonian translocation, inversions, isochromos chromosomes.	omes and rin 4 HR
Evolutionary significance of chromosomal aberrations	1 HR
Transposons:	
IS elements and composite transposons in prokaryotes. Eg.:Ac and Ds element	ts in
Maize	1 HR
Retrotransposons and P elements in Drosophila	2 HRS
Genetic and evolutionary significance of transposons	1 HR
UNIT V EXTRACHROMOSOMAL INHERITANCE /CYTOPLASMIC INHERITANCE	6 HRS
Mitochondrial DNA – petite character in yeast	1HR
Chloroplast DNA – plastid inheritance in Mirabilis jalapa,	1HR
Kappa particles in Paramecium	2 HR
Sigma factor in Drosophila	1 HR
Cytoplasmic male sterility (CMS) in Maize and its commercial exploitation	1 HR

II B.Sc. Genetics

III Semester Practical III

DURATION : 3 HRS/UNIT	NO. OF UNITS: 15
1. Culturing and handling of Drosophila:	2 UNIT
i) Media preparation	
ii) Cleaning and sterilization of bottles	
iii) Handling of Drosophila	
iv) Isolation of virgin flies	
2. Genetics of Drosophila:	
a) Salivary gland chromosomes: Dissection of salivar Polytene chromosomes	ry glands and preparation of 2 UNIT
b) Mounting of sex comb	1 UNITS
c) Types of mutants of Drosophila: eye colour, body colour	our, shape of wings 2 UNIT
3. Study of chromosomal aberrations:	3 UNITS
Temporary squash preparation of flower buds of Rhoeo discolor	to study translocations
Identification of permanent slides:	
Inversion - salivary gland chromosomes of Drosophila;	
Translocation - flower buds of Rhoeo discolor	
Induction of polyploidy in onion root tip (demonstration)	
4. Genetic problems on linkage and crossing over	3 UNITS
i) Drosophila	
ii) Maize	
iii) Human (Sex linkage)	
Practical tests/repetition Note: 13 Practical + 2 units for practical tests/repetition	2 UNITS
REFERENCES:	
1. Bruce Alberts et al (1989), MOLECULAR BIOLOGY	OF THE CELL, 4 th edition,

- Garland Publications, New York.
 2. Daniel Hartl& Jones E.W. (1998), GENETICS, PRINCIPLES AND ANALYSIS, 4th edition, Jones & Bartlett Publication, Massachusetts.
- 3. Goodenough U. (1984), GENETICS, 3rd edition, CBS College Publishing.

- 4. Gupta P. K. (2003), CELL AND MOLECULAR BIOLOGY, 2nd edition, Rastogi Publications, Meerut.
- O'Brien S. (1993), GENETIC MAPS, 6th edition, Book 3: Lower Eukaryotes. Book
 4: Nonhuman Vertebrates. Book 6: Plants, Cold Spring Harbor Lab Press, New York.
- Obe G. and Natarajan A.T. (1990), CHROMOSOMAL ABERRATIONS: BASIC AND APPLIED ASPECTS, Springer Verlag, Berlin.
- 7. Sambamurthy A.V.S. (1999), GENETICS, Narosa Publishing House, New Delhi.
- 8. Sinha U. and Sinha S., CYTOGENETICS, PLANT BREEDING AND EVOLUTION, Vikas Publishing House, New Delhi.
- 9. Snustad, D.P, Simmons M.J (2006), PRINCIPLES OF GENETICS, 4th edition, Wiley Asia Student Edition.
- 10. White M.J.D. (1973), ANIMAL CYTOLOGY AND EVOLUTION, Cambridge University Press.