JYOTI NIVAS COLLEGE AUTONOMOUS SYLLABUS FOR 2018 BATCH AND THEREAFTER

Programme: B.Sc. Semester: II

GENETICS PAPER II

BIOMETRY AND TRANSMISSION GENETICS

Course Code: 18IIGT2 No. of Hours: 60

COURSE OBJECTIVES:

- To give a strong foundation on statistical analysis which will help in research
- To study the fine structure of chromosome
- To learn the characteristics of sex linked inheritance
- LEARNING OUTCOMES:
- To understand the fundamentals of biometry and its effective application in genetic analysis
- To understand that genes are discrete units that interact to affect phenotype
- To know that sex determination has a genetic basis

A. BIOMETRY

UNIT I: ELEMENTS OF BIOMETRY

15 HRS

Probability – Definition, addition and multiplication rules

Normal curve – Importance, properties, standard normal curve, computing normal probabilities

Hypothesis testing – Types of hypotheses; Two types of errors; standard errors of a statistic;

t test – Test for single mean, test for difference of means for independent and dependent samples

F test- equality of variances

Chi square test – testing of goodness of fit, testing for independence of attributes and its application in segregation ratios

B. TRANSMISSION GENETICS

UNIT II:ALLELISM 11 HRS

Introduction: Definition and types of allelism; penetrance and expressivity; test for

allelism 2 HRS

Multiple alleles : Color loci in corn; Eye color in Drosophila; ABO Blood groups factor in human. Genetic problems	and Rhesus 6 HRS
Pseudoalleles: lozenge eye in Drosophila; eye colour in Drosophila	2 HRS
Lethal alleles in mice	1 HR
UNIT III: GENE INTERACTIONS	11 HRS
Non-epistasis: Inheritance of comb pattern in fowl	1 HR
Epistasis:	
Dominant epistasis – coat color in dog (12:3:1),	1 HR
Recessive epistasis – coat color in mice (9:3:4),	1 HR
Duplicate genes with cumulative effect – kernel color in wheat (9:6:1)	1 HR
Duplicate dominant genes – capsule shape in shepherd's purse (15:1)	1 HR
Duplicate recessive genes – flower color in sweet pea (9:7)	1 HR
Dominant – recessive interaction – plumage in fowls (13:3)	1 HR
Pleiotropism	1 HR
Genetic problems	3 HRS
UNIT IV: SEX DETERMINATION	12 HRS
Chromosomal theory of sex determination:	1 HR
XX-XY, XX-XO and ZZ-ZW	
Bridges' Genic Balance theory,	1 HR
Parthenogenesis as a sex determining mechanism-Arrhenotoky and Thelytoky with	
examples	1 HR
Sex determination in man; SRY gene and its role	1 HR
Y Chromosome in sex determination in Melandrium and Sphaerocarpus	2 HRS
Environment and sex determination: Sex determination in Bonellia; hormonal control of sex determination (free martin); gynandromorphs, intersexes, supersexes in Drosophila; sex differentiation and dosage compensation 4 HRS	
Sex limited (cock feathering) and sex influenced traits (pattern baldness in man)	2 HRS
UNIT V:SEX LINKAGE	11 HRS
Non-disjunction of chromosomes: Bridges' theories of non-disjunction - I secondary non-disjunction in Drosophila	Primary and 2 HRS
Sex linked inheritance:	3 HRS

X linked inheritance in Drosophila (eye color and lethal genes) and man (haemophilia and color blindness).

Y linked inheritance in Drosophila (bobbed bristles).	1 HR
Sex linked genes in poultry and moths.	1 HR
Sex related genes in maize.	1 HR
Attached X chromosome in Drosophila.	1 HR
Genetic problems	2 HRS

I B.Sc. Genetics-II Semester - Practical II

DURATION: 3 HRS/UNIT

NO. OF UNITS: 15

1. Temporary squash preparation of -Onion flower buds and Grasshopper testis for

meiosis 3 UNITS

2. Study of 3 UNITS

- a. Incomplete dominance Mirabilis jalapa
- b. Non-epistatic gene interaction/supplementary gene interaction- inheritance of comb pattern in fowls
- c. Recessive epistasis coat color in mice
- d. Duplicate dominant epistasis capsule shape in Capsella (Shepherd's purse)
- e. Duplicate recessive epistasis/Complementary gene interaction-*Lathyrus odoratus* (Sweet pea)
- 3. Study of ABO and Rh blood groups in man

1 UNIT

4. Computation of mean, mode, median, standard deviation and standard error

2 UNITS

5. Genetic Problems

2 UNITS

- 5 a. Multiple alleles
- 5 b. Gene interactions

6. Application of Chi-square test, t test and F test

2 UNITS

Practical tests/repetition

2 UNITS

Note: 13 Practical + 2 units for practical tests/repetition

REFERENCES:

- Daniel Hartl and Jones E.W. (1998), GENETICS, PRINCIPLES AND ANALYSIS, 4th edition, Jones & Bartlett Publication, Massachusetts.
- 2. Elrod S.L. and Stansfield W.D. (Schaum's outlines) (2002), THEORY AND PROBLEMS OF GENETICS, 4th edition, Tata McGraw-Hill, New Delhi.
- 3. Gardener et al, (2005), PRINCIPLES OF GENETICS, 8th edition, John Wiley & Sons Inc., New York.
- 4. Klug W.S., Cummings M.R. (2000), CONCEPTS OF GENETICS, 6th edition, Prentice Hall, London.

- 5. Ross S., A FIRST COURSE IN PROBABILITY, (1994) 4th edition, McMillan, New York.
- 6. Satguru Prasad (1993), FUNDAMENTALS OF BIOSTATISTICS, Emkay Publications, New Delhi.
- 7. Sinnott E.W., Dunn L.C. and Dobzhansky T. (1958), PRINCIPLES OF GENETICS, 5th edition, McGraw-Hill Publications, New York.
- 8. Snustad, D.P., and Simmons M.J. (2006), PRINCIPLES OF GENETICS, 4th edition, Wiley Asia Student Edition.
- 9. Strickberger M.W. (2006), GENETICS, 3rd edition, Prentice Hall of India, New Delhi.
- 10. Tamarin R.H. (2002), PRINCIPLES OF GENETICS, 7th edition Tata McGraw-Hill, New Delhi.
- 11. **e-books:**http://torrentz.eu/gen/genetics+books-q, Snustad D.P. and Simmons M.J., (2012), PRINCIPLES OF GENETICS, 6th edition