JYOTI NIVAS COLLEGE AUTONOMOUS **SYLLABUS FOR 2018 BATCH AND THEREAFTER**

Programme: B.Sc.

GENETICS PAPER I

CELL BIOLOGY AND MENDELISM

Course Code: 18IGT1

COURSE OBJECTIVES:

- To learn the basic concepts of genetics
- To learn the structure of cell organelles and their functions

LEARNING OUTCOMES:

- To understand the scope of genetics
- To obtain a strong knowledge of the basic concepts of cell biology

UNIT I CELLULAR STRUCTURE AND FUNCTION **23 HRS**

Cell Wall: Ultra structure, chemical composition, and function; plasmadesmata and gap junctions **3 HRS**

Plasma membrane: Ultra structure – Fluid mosaic model; chemical composition, Functions of plasma membrane –Osmosis, phagocytosis, pinocytosis, active transport. 3 HRS

Cytoplasm and cytoskeleton: Chemical composition, Peroxisomes and microsomes 2 HRS

Cell organelles: Ultra structure, chemical composition and functions of Endoplasmic reticulum, Ribosomes, Centrosomes, Lysosomes, Golgi complex 7 HRS

Mitochondria: Ultra structure, chemical composition, functions in general, Mitochondria as a semi-autonomous cell organelle 2 HRS

Chloroplast: Ultra structure, chemical composition and functions, Chloroplast as a semiautonomous cell organelle **2 HRS**

Nucleus: Chemical composition and functions, Morphology – nuclear envelope, nuclear pore complex, nucleolus, nucleoplasmand chromatin **2 HRS**

Cell line study: General characteristics, protocol for deriving cell lines and

applications		2 HRS	
UNIT II:	CELLULAR REPRODUCTION	13 HRS	
Cell cycle: Phases; checkpoints and cyclin dependent regulation of cell cycle (in			
brief)		2 HRS	

Semester: I

No. of Hours: 60

Mitosis: Stages; structure and function of mitotic apparatus (astral and anastral spindle); spindle fibres and its composition; cytokinesis in plant and animal cell; significance of mitosis. Mitotic stimulators and inhibitors 4 HRS

Meiosis: Stages; synaptonemal complex, crossing over, chiasma formation; significance of meiosis 4 HRS

Cell death: Programmed cell death (apoptosis), process and mechanisms of apoptosis; its significance 3 HRS

8 HRS

2 HRS

UNIT III: MODEL ORGANISMS

Introduction to model organisms; life cycles and genetic significance of -

Virus – Lambda phage;

Bacteria - *E.coli*;

Genetic problems

Fungi - Saccharomyces cerevisiae,

Invertebrates - Caenorhabditis elegans, Drosophila melanogaster,

Vertebrates - Danio rerio, Mus musculus

Plants - Pisum sativum and Arabidopsis thaliana

UNIT IV: HISTORY AND SCOPE OF GENETICS	7 HRS		
Pre-mendelian genetic concepts: Pre-formation theory, Epigenesis, Pangenesis of acquired characters, Germplasm theory.			
Genetics -scope; genetics in relation to society - breeding, medicine, genetic betterment of human race, and ethical and legal issues			
Heredity and environment; genotype and phenotype; heredity and variation; clones, p and inbred lines.Norm of reaction and phenocopies 2			
UNIT V: MENDELISM	9 HRS		
Biography: Mendel and his experiments on pea plant	1 HR		
Law of Segregation: Monohybrid cross, back cross and test cross, Dominance and			
recessive,	2 HRS		
Law of Independent Assortment: Dihybrid cross in pea plant and Drosophila sp.,			
back cross and test cross.	2 HRS		
Deviation from Mendalism: Co-dominance and Incomplete dominance			

I B.Sc. Genetics-I Semester - Practical I

DURATION: 3 HRS/UNIT	NO.OF UNITS: 15		
1. Microscopy:	2 UNITS		
Study of dissection, stereo, compound and binocular microscopes			
2. Model Organisms- Externals and their significance in genetic studi	es: 5 UNITS		
Virus – λ phage			
Bacteria – E. coli (slide)			
Neurospora and Saccharomyces cerevisiae (slides)			
Caenorhabditis elegans			
Drosophila melanogaster			
Danio rerio			
Maize (Zea mays)			
Arabidopsis			
3. Staining Techniques:	3 UNITS		
Vital staining - Mitochondria in yeast			
Gram staining - Lactobacillus / E.coli			
4. Observation of mitotic stages in permanent slides	1 UNIT		
5. Temporary squash preparation of onion root tip for mitosis	1 UNIT		
6. Floral structure of Crotolaria and Brassica species (mustard)	1 UNIT		
Practical tests/repetition Note: 13 Practical + 2 units for practical tests/repetition			

REFERENCES:

- 1. Bruce Alberts et al (1989), MOLECULAR BIOLOGY OF THE CELL, 4th edition, Garland Publications, New York.
- 2. Gardener et al(2005), PRINCIPLES OF GENETICS, 8th edition, John Wiley & Sons Inc., New York.
- 3. Gerald Karp (2005), CELL AND MOLECULAR BIOLOGY, 4th edition, John Wiley & Sons Inc., New York.
- 4. Gupta P. K. (2003), CELL AND MOLECULAR BIOLOGY, 2nd edition, Rastogi Publications, Meerut.\
- 5. Cheryl P. Helgason and CindyL.Miller (2012), BASIC CELL CULTURE PROTOCOL, Humana Press-Science

- 6. Simon P. Langdon (2004) CANCER CELL CULTURE: METHODS AND PROTOCOLS, Springer
- 7. Roberts E.D.P. and Roberts E.M.F., CELL BIOLOGY & MOLECULAR BIOLOGY, Saunders College Publication, Philadelphia.
- 8. Sinnott E.W., Dunn L.C. and Dobzhansky T.(1958), PRINCIPLES OF GENETICS, 5th edition, McGraw-Hill Publications, New York.
- 9. Tamarin R.H. (2002), PRINCIPLES OF GENETICS, 7th edition, Tata McGraw-Hill, New Delhi.
- 10. Verma P.S. and Agarwal V.K. (2010), GENETICS, S. Chand and Co. Ltd., New Delhi
- 11. e-books:http://www.ncbi.nlm.nih.gov/books/NBK21766/, Anthony JF Griffiths et al (2000),INTRODUCTION TO GENETIC ANALYSIS, 7th edition,W. H. Freeman, New York
- 12. http://www.ncbi.nlm.nih.gov/omimOnline Mendelian Inheritance in Man (OMIM), An Online Catalog of Human Genes and Genetic Disorders