

We

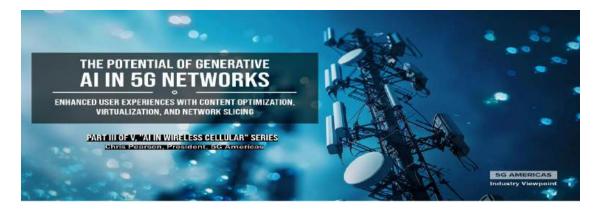
E-JOURNAL ON

Computer Networks

- Al and 5G
- Cloud Robotics
- ✓ 6G Vision

Issue - 4 November 2024

JYOTI NIVAS COLLEGE


POST GRADUATE CENTRE
Department of Computer Science - PG

S.No	Title	Page Number
1	Al and 5G Network Optimization	2
2	Cloud Robotics	5
3	Edge Computing for Autonomous Vehicle	8
4	Edge Computing for Video Delivery	10
5	Edge Computing for IoT	13
6	Firewall in Network Security	16
7	Zero Trust Architecture	18
8	NFV in 5G Networks	21
9	6G Vision and Challenges	24
10	Software-Defined Networking	27
11	User Datagram Protocol	30

AI & 5G NETWORK OPTIMIZATION

SADIYA SUMAIYA.A (23MSCS08)

The convergence of Artificial Intelligence (AI) and 5G technology offers a transformative potential for optimizing network performance, enhancing user experiences, and enabling new applications. Here are some key areas where AI is being utilized for 5G network optimization:

Network Management and OptimizationAI algorithms can analyze vast amounts of data from the network to optimize resource allocation, manage traffic, and predict potential issues. This includes:**Traffic Prediction:** AI can forecast network congestion and dynamically allocate resources to ensure smooth traffic flow.**Self-Organizing Networks (SON):** AI enables SON features, such as automatic cell configuration, optimization, and healing, reducing the need for manual intervention.

Quality of Service (QoS) and User ExperienceAI can improve QoS by predicting and mitigating issues before they impact users. This includes:Real-time Monitoring: AI can monitor network performance in real-time and adjust parameters to maintain optimal performance. Security EnhancementAI enhances the security of 5G networks by detecting and responding to threats more quickly:Anomaly Detection: AI can identify unusual patterns that may indicate security breaches or network attacks.Fraud Detection: AI algorithms can detect fraudulent activities by analyzing patterns and behaviors that deviate from the norm.

Automation and OrchestrationAI enables greater automation in 5G networks, reducing the need for human intervention:Network Slicing: AI can manage network slices, ensuring that each slice meets its specific service requirements.Virtual Network Functions (VNFs): AI can orchestrate VNFs, optimizing their deployment and scaling to meet demand.

Edge Computing and IoT Integration The combination of AI and 5G at the network edge facilitates low-latency applications and enhances IoT capabilities: Edge AI: Deploying AI models at the network edge reduces latency and enhances real-time decision-making for applications like autonomous vehicles and smart cities. IoT Device Management: AI can manage and optimize the connectivity and performance of a large number of IoT devices, ensuring efficient use of network resources.

Challenges and Considerations

While AI offers significant benefits for 5G networks, there are challenges to consider: **Data Privacy and Security:** Handling sensitive data with AI requires stringent privacy and security measures. **Complexity and Cost:** Implementing AI in 5G networks can be complex and costly, requiring advanced infrastructure and expertise. **Regulatory and Ethical Issues:** The use of AI in network management raises questions about transparency, accountability, and ethical considerations.

AI and 5G network optimization is a rapidly evolving field where artificial intelligence (AI) technologies are leveraged to enhance the performance, efficiency, and reliability of 5G networks. Here are some key aspects and applications of AI in 5G network optimization:

Network Planning and Deployment:AI can analyze large datasets to determine optimal locations for base stations and other infrastructure componentsPredictive models help in forecasting traffic demands and planning capacity accordingly.**Resource Management**:AI algorithms dynamically allocate resources (like bandwidth and power) based on real-time network conditions and user demands.Machine learning models can predict congestion and adjust resources proactively to maintain service quality.

Fault Detection and Maintenance: AI can predict potential failures and perform predictive maintenance, reducing downtime and improving network reliability. Automated fault detection and diagnosis using AI can quickly identify issues and suggest corrective actions. Quality of Service (QoS) and Quality of Experience (QoE): AI models can monitor and predict QoS and QoE metrics, adjusting network parameters to ensure optimal user experiences. Security: AI enhances security by detecting and mitigating cyber threats and anomalies in network traffic. Machine learning algorithms can identify unusual patterns that may indicate security breaches, enabling rapid response.

Applications of AI in 5G Network Optimization

Network Slicing:AI enables dynamic and efficient management of network slices, ensuring that each slice meets its specific service requirements. Machine learning models optimize resource allocation among slices based on real-time usage patterns.

Traffic Prediction and Management:AI predicts traffic loads and user behavior, enabling better management of network resources.Intelligent traffic routing ensures minimal latency and optimal bandwidth usage.

Self-Organizing Networks (SON):AI-powered SONs can automatically configure and optimize network parameters without human intervention. Adaptive algorithms continuously learn from network conditions to improve performance.

User Experience Enhancement: AI personalizes network services based on user preferences and behaviors. Predictive analytics improve user experience by anticipating and addressing potential issues before they impact the user.

Challenges and Future DirectionsData Privacy: Ensuring the privacy and security of user data while leveraging AI for network optimizationComplexity: Managing the complexity of The future of AI in 5G network optimization looks promising with the potential for evenmore

sophisticated algorithms and use cases, such as integrating AI with edge computing and IoT devices, further enhancing the capabilities of 5G networks.

Reference:

https://www.rantcell.com/ai-for-5g-network-operations.html

https://www.ericsson.com/en/network-automation/network-optimization

Cloud Robotics

Ayushi Baghel

(23MCA06)

What is Cloud Robotics?

Cloud robotics is a field of robotics that attempts to invoke cloud technologies such as cloud computing, cloud storage, and other Internet technologies centered on the benefits of converged infrastructure and shared services for robotics. When connected to the cloud, robots can benefit from the powerful computation, storage, and communication resources of modern data center in the cloud, which can process and share information from various robots or agent (other machines, smart objects, humans, etc.). Humans can also delegate tasks to robots remotely through networks. Cloud computing technologies enable robot systems to be endowed with powerful capability whilst reducing costs through cloud technologies. Thus, it is possible to build lightweight, low-cost, smarter robots with an intelligent "brain" in the cloud. The "brain" consists of data center, knowledge base, task planners, deep learning, information processing, environment models, communication support, etc.

Components

A cloud for robots potentially has at least six significant components:

- Building a "cloud brain" for robots. It is the main object of cloud robotics.
- Offering a global library of images, maps, and object data, often with geometry and mechanical properties, expert system, knowledge base (i.e. semantic web, data centres);
- Massively-parallel computation on demand for sample-based statistical modelling and motion planning, task planning, multi-robot collaboration, scheduling and coordination of system;
- Robot sharing of outcomes, trajectories, and dynamic control policies and robot learning support;
- Human sharing of "open-source" code, data, and designs for programming, experimentation, and hardware construction;
- On-demand human guidance and assistance for evaluation, learning, and error recovery;
- Augmented human—robot interaction through various way (Semantics knowledge base, Apple SIRI like service etc.).

Applications

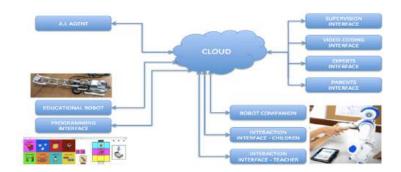
1. Autonomous mobile robots

Google's self-driving cars are cloud robots. The cars use the network to access Google's enormous database of maps and satellite and environment model (like Streetview) and combines it with streaming data from GPS, cameras, and 3D sensors to monitor its own position within centimetres, and with past and current traffic patterns to avoid collisions. Each car can learn something about environments, roads, or driving, or conditions, and it

sends the information to the Google cloud, where it can be used to improve the performance of other cars.

2. Cloud medical robots

A medical cloud (also called a healthcare cluster) consists of various services such as a disease archive, electronic medical records, a patient health management system, practice services, analytics services, clinic solutions, expert systems, etc. A robot can connect to the cloud to provide clinical service to patients, as well as deliver assistance to doctors (e.g. a co-surgery robot). Moreover, it also provides a collaboration service by sharing information between doctors and care givers about clinical treatment.


3. Assistive robots

A domestic robot can be employed for healthcare and life monitoring for elderly people. The system collects the health status of users and exchange information with cloud expert system or doctors to facilitate elderly people life, especially for those with chronic diseases. For example, the robots are able to provide support to prevent the elderly from falling down, emergency healthy support such as heart disease, blooding disease. Care givers of elderly people can also get notification when in emergency from the robot through network.

Limitations of cloud robotics:

Though robots can benefit from various advantages of cloud computing, cloud is not the solution to all of robotics.

- Controlling a robot's motion which relies heavily on (real-time) sensors and feedback of controller may not benefit much from the cloud.
- Tasks that involve real-time execution require on-board processing.
- Cloud-based applications can get slow or unavailable due to high-latency responses or network hitch. If a robot relies too much on the cloud, a fault in the network could leave it "brainless."

Challenges

The research and development of cloud robotics has following potential issues and challenges:

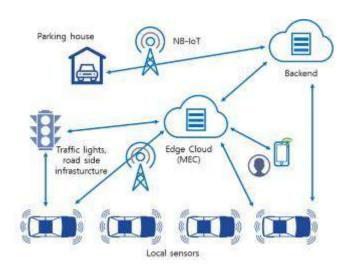
- Effective load balancing: Balancing operations between local and cloud computation.
- Knowledge bases and representations
- Collective learning for automation in cloud
- Infrastructure/Platform or Software as a Service

• Internet of Things for robotics

Conclusion

Cloud robotics represents a significant advancement in robotics, offering enhanced capabilities through cloud-based resources. It enables the development of intelligent, cost-effective, and lightweight robots with extensive applications in various fields. However, addressing the limitations and challenges associated with cloud robotics is crucial for its successful implementation and widespread adoption.

Reference:


https://formant.io/resources/glossary/cloud-robotics/

https://www.nokia.com/networks/5g/use-cases/cloud-robotics/

Edge Computing for Autonomous Vehicle

Shwetha V

23MCA33

Introduction

Edge computing is revolutionizing autonomous vehicles by moving computation and data processing closer to where the data is generated. Here's a detailed look at how this technology enhances the performance of autonomous vehicles:

What is Edge Computing?

Edge computing involves processing data locally on the device or at a nearby location (the "edge"), rather than depending on a centralized data centre. This approach minimizes latency, reduces bandwidth usage, and shortens the time required to send and receive data.

Advantages for Autonomous Vehicles

- 1. **Reduced Latency:** Autonomous vehicles require real-time processing of data from sensors (like cameras, LIDAR, radar) to make split-second decisions. Edge computing processes this data locally, minimizing the delay that would occur if data had to be sent to a remote server.
- 2. **Enhanced Reliability:** By processing data on the vehicle itself or nearby, edge computing increases the reliability of the system. This is critical in autonomous driving where timely responses to environmental changes are essential for safety.
- 3. **Bandwidth Efficiency:** Autonomous vehicles generate massive amounts of data. Edge computing reduces the need to transmit all this data to a central server, thus conserving bandwidth and reducing the load on communication networks.
- 4. **Improved Safety:** Immediate processing of data at the edge helps in real-time decision-making, such as braking or steering adjustments, which enhances safety by enabling faster reactions to potential hazards.
- 5. **Scalability:** As the number of autonomous vehicles on the road increases, edge computing helps manage the data more efficiently. Each vehicle can process and analyse data locally, reducing the strain on centralized systems and allowing for better scalability.

6. **Data Privacy and Security:** Processing sensitive data locally helps in maintaining privacy and security. Personal data or location information does not need to be transmitted over potentially insecure networks, reducing the risk of data breaches.

Implementation in Autonomous Vehicles

- 1. **Onboard Computers**: Autonomous vehicles are equipped with powerful onboard computers that use edge computing to analyze data from various sensors. These systems are designed to handle complex computations and make rapid decisions.
- 2. **Real-time Data Fusion**: Edge computing facilitates the integration of data from different sensors in real-time. This fusion of data helps in creating a comprehensive understanding of the vehicle's surroundings.
- 3. **Local AI Models**: Machine learning models used for tasks like object detection, lane-keeping, and path planning are deployed on the vehicle's edge computing system. These models can be updated periodically, but they perform most of their computations locally.
- 4. **Vehicle-to-Everything (V2X) Communication**: Edge computing also plays a role in V2X communication, where vehicles communicate with infrastructure, other vehicles, and pedestrians. Edge nodes can process and relay important information efficiently, improving the overall traffic management and safety.

Challenges and Factors to Consider

- 1. Computational Power: Edge computing demands substantial computational resources. Autonomous vehicles require sophisticated processors to manage the complex algorithms needed for real-time decision-making.
- 2. Heat and Power Management: The onboard computers produce heat and consume energy. Effective thermal management and energy-efficient designs are essential for maintaining system performance and longevity.
- 3. Software Updates: Regularly updating software and AI models is critical for the vehicle's performance and safety. This requires developing efficient methods for over-the-air (OTA) updates.
- 4. Interoperability: It is vital for edge computing systems to integrate seamlessly with various sensors and communication protocols to ensure the smooth operation of autonomous vehicles.

Summary

Edge computing greatly improves the performance, safety, and efficiency of autonomous vehicles by facilitating real-time data processing and decision-making. As technology progresses, edge computing will become increasingly vital to the future of autonomous transportation.

References:

https://www.arrow.com/en/research-and-events/articles/sensors-and-edge-ai-how-they-work-together-to-provide-autonomous-driving

https://lanner inc.com/applications/transportation/edge-ai-computing-for-autonomous-driving-system

Edge computing for video delivery

Anusha CC 23MCA04

Introduction

Video content has become an essential part of our everyday life in the digital age, generating a substantial amount of internet traffic. Traditional centralized data processing and distribution approaches are coming under increasing strain from the increased demand for high-quality video streaming, which includes live events, video on demand, and video conferencing. Edge computing presents a novel strategy by moving data processing closer to the consumer, greatly enhancing the effectiveness and performance of video distribution. This paper examines the many advantages of edge computing and how it changes the way that video is delivered.

Understanding Edge Computing for Video Delivery

Edge computing is the practice of putting data processing and computational power closer to the location where the data is generated or consumed. This entails positioning servers and content delivery nodes (CDNs) close to end users or in key spots inside local networks for the delivery of video. Among the fundamental ideas are:

- **1. Proximity to End-Users**: By placing edge servers closer to users, the actual distance that data must travel is decreased. This close proximity reduces latency and improves video stream responsiveness.
- **2. Content Caching and Preprocessing:** Edge nodes preprocess streams to accommodate various device capabilities and network conditions, and cache frequently viewed video content. Repetitive long-distance data transfers are less necessary thanks to its localized treatment.
- **3. Reduced Latency:** Edge computing dramatically reduces latency by decreasing the data transmission distance. Applications like live streaming and video conferencing that need for real-time interactions need this.
- **4. Optimizing Bandwidth:** By shifting video traffic to edge servers, you may reduce the strain on your core data centers and the whole internet infrastructure, which helps to maximize bandwidth and minimize any possible bottlenecks.
- **5. Adaptive Streaming:** Edge computing enables adaptive bitrate streaming, which ensures continuous and excellent playback by enabling video quality to dynamically vary dependent on the user's network conditions.
- **6. Enhanced Security:** By enabling localized security measures and minimizing the quantity of sensitive data transferred over long distances, processing data closer to its source improves security.

Edge Computing's Benefits for Video Delivery

- **1. Better Performance:** By lowering latency and delivering a more responsive viewing experience, edge computing improves the performance of video streaming.
- **2. Scalability:** Scalable video delivery solutions are supported by the efficient handling of growing user loads and data volumes made possible by the distribution of content across several edge nodes.
- **3.** Cost Efficiency: Organizations can reduce the requirement for a large central infrastructure and related expenses by shifting traffic to edge servers, which results in more affordable video delivery.
- **4. Resilience and Reliability:** Localized nodes in a distributed edge architecture can function independently even in the event that certain network segments have problems, providing increased reliability.
- **5. Improved User Experience:** By reducing buffering and modifying streaming quality in response to device and network conditions, edge computing makes for a more delightful and seamless viewing experience.

Useful Applications

- **1. Live streaming:** Edge computing guarantees the fastest possible real-time content delivery for events like sporting events, music festivals, and news broadcasts, improving the viewing experience.
- **2. Video Conferencing:** Edge computing lowers latency and enhances video quality during video conversations and virtual meetings, promoting more productive and interesting dialogue.
- **3. Video on Demand (VOD):** Edge computing supports a variety of device kinds and network conditions while speeding up loading times and enhancing playing quality for on-demand video content.
- **4. Security and Surveillance:** Quick analysis and reaction are made possible by real-time processing of video feeds from security cameras, which enhances both operational effectiveness and security.

Conclusion

By overcoming the drawbacks of conventional centralized methods, edge computing is transforming the delivery of video content. It delivers significant gains in efficiency, scalability, and performance by moving processing resources closer to the end user. Edge computing will be crucial in influencing the future of video transmission as the demand for smooth, high-quality, low-latency video increases. This will guarantee customers all over the world a seamless and exceptional experience. In the context of video distribution, this paper offers a thorough introduction to edge computing, emphasizing its tenets, advantages, and uses. Please

feel free to add any particular information that are pertinent to your audience or modify the content to better suit your needs.

References:

https://www.muvi.com/blogs/role-of-edge-computing-in-video-streaming/

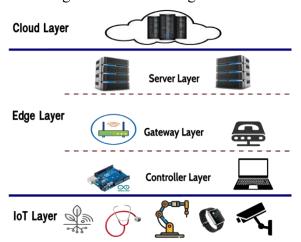
 $\underline{https://stlpartners.com/articles/edge-computing/3-reasons-why-edge-will-change-video-\underline{streaming/}}$

https://www.wipro.com/engineering/mobile-edge-computing-for-improvements-in-ott-video-delivery/

EDGE COMPUTING FOR IOT

NIRMA B 23MSCS05

INTRODUCTION


Edge computing is a distributed computing paradigm that brings computation and data storage closer to the source of data generation. In the context of IoT, this means processing data at the edge of the network, near the IoT devices, rather than sending all data to a central cloud for processing

Edge computing is revolutionizing the Internet of Things (IoT) by empowering IoT devices with greater autonomy. By enabling local storage, processing, and data analysis, edge computing not only enhances the effectiveness of current IoT devices but also facilitates innovative device capabilities and deployment strategies. The IoT involves connecting physical objects to the internet, allowing them to communicate and function autonomously. Examples include sensors, autonomous vehicles, smart homes, smartwatches, and industrial systems, all of which continuously exchange data over a network.

ARCHITECTURE OF EDGE COMPUTING-BASED IOT

In IoT, edge computing aims to minimize decision-making latency and network traffic through a multi-layered architecture. This architecture includes three main layers: IoT, edge, and cloud.

- **1. IoT Layer:** Encompasses a range of devices like smart cars, robots, and sensors that monitor and manage services and equipment. This layer includes actuators, sensors, controllers, and gateways designed specifically for IoT contexts.
- **2. Edge Layer:** Handles real-time data processing and services. It is divided into three sublayers:
- 3. Cloud Layer: Focuses on large-scale data mining and resource allocation across extensive

areas. It receives data from the edge layer and provides feedback through business

applications and services.

BENEFITS OF EDGE COMPUTING FOR IOT

Low Latency: Edge computing reduces response time by processing data closer to the source, addressing the delays associated with cloud computing and enabling real-time applications like remote surgery and virtual reality.

Energy Saving: By offloading power-intensive computations to edge servers, edge computing significantly lowers energy use, helping IoT devices operate more efficiently.

Security and Privacy: Edge computing enhances security by processing data locally, reducing the risk of data leakage during transmission and minimizing reliance on centralized cloud storage.

Location Awareness: Edge servers can provide personalized services by processing data based on the geographical location of IoT devices, allowing for more targeted and efficient service delivery.

Reduced Operational Expenses: Minimizes data transmission to the cloud, lowering bandwidth consumption and operational costs compared to direct cloud data transfer.

FUTURE TRENDS

- **Integration with 5G**: Explore the synergy between edge computing and 5G networks, and how this combination can enhance IoT applications.
- AI and Machine Learning at the Edge: Discuss the role of AI and ML in enabling advanced analytics and real-time decision-making at the edge.
- Enhanced Security Measures: A greater emphasis on developing robust security protocols and privacy measures. This includes the use of blockchain technology and advanced encryption methods to protect data at the edge.

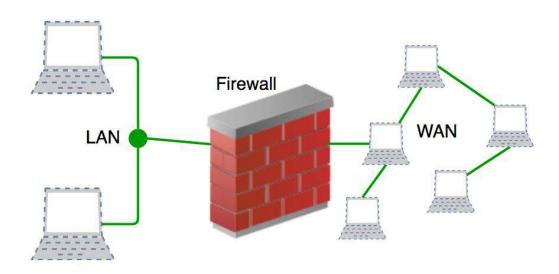
CONCLUSION

Edge computing transforms IoT by reducing latency, boosting energy efficiency, and enhancing security through localized data processing. It enables real-time applications and minimizes response times, making it crucial for latency-sensitive tasks like remote surgery and virtual reality. By offloading computational tasks from energy-constrained IoT devices to edge servers, it improves performance and extends device lifespan. Additionally, edge computing mitigates security risks by decreasing data transmission to centralized cloud systems and supports location-aware, personalized services.

References:

https://stlpartners.com/articles/edge-computing/iot-edge-computing/

https://www.geeksforgeeks.org/edge-computing/


https://www.ibm.com/think/topics/edge-computing

FIREWALL In Network Security

C Thanusree 23MCA11

A firewall is a network security device, either hardware or software-based, which monitors all incoming and outgoing traffic and based on a defined set of security rules accepts, rejects, or drops that specific traffic.

- Accept: allow the traffic
- **Reject:** block the traffic but reply with an "unreachable error"
- **Drop:** block the traffic with no reply

Types of Firewall

Firewalls can be categorized based on their generation.

1. Packet Filtering Firewall

Packet filtering firewall is used to control network access by monitoring outgoing and incoming packets and allowing them to pass or stop based on source and destination IP address, protocols, and ports. It analyses traffic at the transport protocol layer (but mainly uses first 3 layers). Packet firewalls treat each packet in isolation. They have no ability to tell whether a packet is part of an existing stream of traffic. Only It can allow or deny the packets based on unique packet headers. Packet filtering firewall maintains a filtering table that decides whether the packet will be forwarded or discarded.

2. Stateful Inspection Firewall

Stateful firewalls (performs Stateful Packet Inspection) are able to determine the connection state of packet, unlike Packet filtering firewall, which makes it more efficient. It keeps track of the state of networks connection travelling across it, such as TCP streams. So the filtering decisions would not only be based on defined rules, but also on packet's history in the state table.

3. Software Firewall

A software firewall is any firewall that is set up locally or on a cloud server. When it comes to controlling the inflow and outflow of data packets and limiting the number of networks that

can be linked to a single device, they may be the most advantageous. But the problem with the software firewall is they are time-consuming.

4. Hardware Firewall

They also go by the name "firewalls based on physical appliances." It guarantees that the malicious data is halted before it reaches the network endpoint that is in danger.

5. Application Layer Firewall

Application layer firewall can inspect and filter the packets on any OSI layer, up to the application layer. It has the ability to block specific content, also recognize when certain application and protocols (like HTTP, FTP) are being misused. In other words, Application layer firewalls are hosts that run proxy servers. A proxy firewall prevents the direct connection between either side of the firewall, each packet has to pass through the proxy.

6. Next Generation Firewalls (NGFW)

NGFW consists of Deep Packet Inspection, Application Inspection, SSL/SSH inspection and many functionalities to protect the network from these modern threats.

7. Proxy Service Firewall

This kind of firewall filters communications at the application layer, and protects the network. A proxy firewall acts as a gateway between two networks for a particular application.

8. Circuit Level Gateway Firewall

This works as the Sessions layer of the <u>OSI Model's</u>. This allows for the simultaneous setup of two <u>Transmission Control Protocol</u> (TCP) connections. It can effortlessly allow data packets to flow without using quite a lot of computing power. These firewalls are ineffective because they do not inspect data packets; if malware is found in a data packet, they will permit it to pass provided that TCP connections are established properly.

Importance of Firewalls

When you connect personal computers to other IT systems or the internet, it opens up many benefits like collaboration, resource sharing, and creativity. But it also exposes your network and devices to risks like hacking, identity theft, malware, and online fraud.

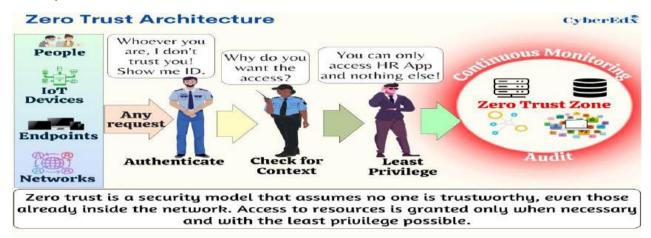
Once a malicious person finds your network, they can easily access and threaten it, especially with constant internet connections.

Using a firewall is essential for proactive protection against these risks. It helps users shield their networks from the worst dangers.

References:

https://en.wikipedia.org/wiki/Firewall_(computing)

https://cloud.google.com/firewall/docs/firewalls


https://www.techtarget.com/searchsecurity/definition/firewall

NETWORK SECURITY ZERO TRUST ARCHITECTURE

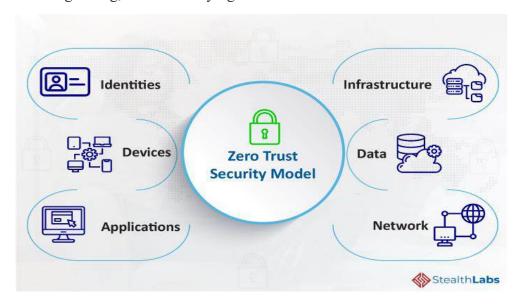
UMME HANI (23MCA41)

What Is Zero Trust Architecture?

Zero trust architecture is a security architecture built to reduce a network's attack surface, prevent lateral movement of threats, and lower the risk of a data breach based on the zero trust security model.

Understanding the Need for Zero Trust Architecture –

For decades, organizations built and reconfigured complex, wide-area hub-and-spoke networks. In these environments, users and branches connect to the data center by way of private connections. To access applications they need, the users have to be on the network. Hub-and-spoke networks are secured with stacks of appliances such as VPN's and "next-generation" firewalls, using an architecture known as castle-and-moat network security. This approach served organizations well when their applications resided in their data centers, but now—amid the growing popularity of cloud services and rising data security concerns—it's slowing them down.


What Are the 5 Pillars of Zero Trust Architecture?

The five "pillars" of zero trust were first laid out by the US Cybersecurity and Infrastructure Security Agency (CISA) to guide the key zero trust capabilities government agencies (and other organizations) should pursue as in their zero trust strategies.

The five pillars are:

- **Identity**—moving to a least-privileged access approach to identity management.
- **Devices**—ensuring the integrity of the devices used access services and data.

- **Networks**—aligning network segmentation and protections according to the needs of their application workflows instead of the implicit trust inherent in traditional network segmentation.
- **Applications and workloads**—integrating protections more closely with application workflows, giving access to applications based on identity, device compliance, and other attributes.
- **Data** shifting to a data-centric approach to cybersecurity, starting with identifying, categorizing, and inventorying data assets.

How Does Zero Trust Architecture Work?

zero trust begins with the assumption that everything on the network is hostile or compromised, and access is only granted after user identity, device posture, and business context have been verified and policy checks enforced. All traffic must be logged and inspected, requiring a degree of visibility traditional security controls can't achieve. A true zero trust approach is best implemented with a proxy-based architecture that connects users directly to applications instead of the network, enabling further controls to be applied before connections are permitted or blocked.

Benefits of Zero Trust Architecture –

- **Grant safe, fast access** to data and applications for remote workers, including employees and partners, wherever they are, improving the user experience.
- **Provide reliable remote access** as well as manage and enforce security policy more easily and consistently than you can with legacy technology like VPNs.
- **Protect sensitive data and apps**-on-premises or in a cloud environment, in transit or at rest—with tight security controls, including encryption, authentication, health checks, and more.
- **Detect, respond to, and recover** from successful breaches more quickly and effectively to mitigate their impact

References:

 $\underline{https://www.zscaler.com/resources/security-terms-glossary/what-is-zero-trust-architecture}$

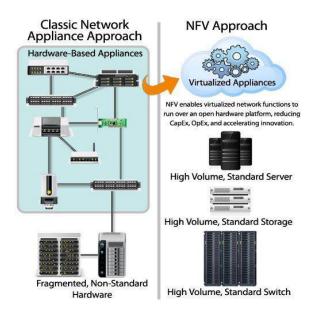
https://en.wikipedia.org/wiki/Zero_trust_architecture

NFV IN 5G NETWORKS

Mausumi Barik
(23MCA18)

Abstract:

The fifth-generation (5G) wireless technology is paving the way to revolutionize future ubiquitous and pervasive networking, wireless applications, and user quality of experience(QoX). To realize its potential, 5G must provide considerably higher network capacity, enable massive device connectivity, with reduced latency and cost, and achieve considerable energy savings compared to existing wireless technologies. The main objective of this paper is to explore the potential of network functions virtualization (NFV) in enhancing 5G Radio access networks functional, architectural and commercial viability, including increased automation, operational agility, and reduced capital expenditure.


Introduction:

5G Networks: Describe the fifth generation of mobile networks, emphasizing its capabilities like higher speed, lower latency, and support for a massive number of connected devices.

NFV: Introduce Network Function Virtualization as a key technology that decouples network functions from proprietary hardware, allowing them to run on virtual machines. A growing group of companies and standardization bodies push research and development of the NFV paradigm to improve cost efficiency, flexibility, and performance guarantees of cellular networks in general.

NFV and Network Overlay:

A forwarding graph defines the sequence of network functions that process different endtoend flows in the network. The computing and storage hardware resources are commonly pooled and interconnected by networking resources. Other network resources interconnects the VNFs with external networks and non-virtualized functions, enabling the integration of existing technologies with virtualized 5G network functions. NFV Management and Orchestration comprises resource provisioning modules that achieve the promised benefits of NFV.

Virtualization of 5G RAN:

Several control and user plane network functions in 3GPP RANs are candidate for virtualization. Figure 3 shows typical 3GPP network functions, which will also be in 5G, that are virtualizable in principle. Virtualizing these functions lowers footprint and energy consumption through dynamic infrastructure resource allocation and traffic balancing. It also eases network management and operations and enables innovative service offering. We will study potential CAPEX and OPEX savings to be incurred from virtualizing BBUs in a typical cellular network

Open Problems:

The previous discussion envisioned several research problems to efficiently employ NFV in 5G RANs. RANs rely heavily on digital signal processors in the base station hardware to meet strict real time requirements. Virtualized Software Defined Radio (SDR) technology can virtualize BBUs and generally requires support of real time constraint processing in both VMs and the interconnecting networks. The CoMP example we presented earlier ([7]) uses fiber communication to ensure meeting time constrains of the BBUs. However, OpenFlow does not provide native support of time-critical packet switching and leaves this task to controllers. Performance of virtualized SDR based BBU interconnected to RRU through OpenFlow switches is unexplored.Computing resource allocation is also challenging with strict real time

requirements and dynamic allocation according to network traffic demands, service descriptions, and operator cost constraints.

Conclusions:

As mobile computing continues to evolve and access to computing clouds becomes ubiquitous, mobile users expect highlyreliable, anywhere and any-time wireless connectivity and services. Cognizant of emerging trends in wireless services and applications, the paper focuses on exploring the potential of NFV to address the daunting challenges and design requirements of 5G RANs. The paper underscores that NFV approaches to enable advanced, cooperative, rapidly-changing baseband processing and radio resource management in 5G, must be flexible, cost effective, and elastic. NFV naturally inherits these benefits from virtualization, cloud computing, and SDN paradigms. New challenges, related to carrier-grade network functions, must be addressed.

References:

https://www.ericsson.com/en/nfv

https://www.allot.com/network-intelligence/nfv-5g-architecture/

6G VISION AND CHALLENGES

RESHMI E

23MCA27

Vision of 6G

- **Ultra-High-Speed Connectivity:** 6G aims to offer speeds up to 100 times faster than 5G, potentially reaching terabit-per-second data rates. This will enable new applications and services requiring extremely high bandwidth.
- **Ultra-Low Latency:** With a goal of reducing latency to less than 1 millisecond, 6G will support real-time communication for applications like augmented reality (AR) and virtual reality (VR), as well as more advanced autonomous systems.
- Enhanced Connectivity: 6G will enhance connectivity not just for people, but also for a vast array of devices and sensors in the Internet of Things (IoT). This includes improved coverage in rural and remote areas.
- Advanced AI Integration: 6G is expected to incorporate AI and machine learning to optimize network performance dynamically, enhance security, and manage the massive amounts of data more effectively.
- **Holographic Communication**: One of the visionary aspects of 6G includes support for holographic communication, allowing for more immersive and interactive virtual experiences.
- **Sustainability**: 6G will focus on energy efficiency and sustainability, aiming to reduce the environmental impact of network infrastructure and operations.

6G Challenges

• Technological Complexity:

- Terahertz Frequencies: 6G will explore the use of terahertz (THz) frequencies, which are higher than those used in 5G. THz frequencies offer higher data rates but face challenges such as signal attenuation and absorption.
- Advanced Materials: New materials and technologies, such as metamaterials, will be needed to handle the unique properties of THz frequencies.

• Spectrum Allocation:

- Frequency Bands: Allocating and managing new frequency bands, including THz spectrum, will require international coordination to avoid interference with existing services.
- Regulation: Governments and regulatory bodies will need to develop new frameworks to manage and allocate these frequencies effectively.

• Infrastructure Development:

- Deployment: Building the infrastructure for 6G, including new base stations and antennas, will be capital-intensive and require significant time and resources.
- Integration: Integrating 6G with existing 4G and 5G networks will be crucial to ensure a smooth transition and interoperability.

• Security and Privacy:

- New Threats: The advanced capabilities of 6G may introduce new security vulnerabilities and attack vectors, such as those related to AI and new spectrum bands.
- Encryption: Ensuring robust encryption and data protection measures will be essential to safeguard against cyber threats and ensure user privacy.

• Cost:

- Investment: The high cost of developing and deploying 6G technology will be a major challenge, requiring substantial investment from both public and private sectors.
- Affordability: Ensuring that 6G technology is accessible and affordable for consumers and businesses will be important to maximize its benefits.

• Regulatory and Standardization Issues:

- Global Standards: Developing global standards for 6G technology will involve collaboration among international standardization bodies, governments, and industry stakeholders.
- Policy Development: Regulatory policies will need to evolve to address the new challenges and opportunities presented by 6G.

• Environmental Impact:

- Infrastructure Footprint: The deployment of new infrastructure, such as additional antennas and base stations, could have environmental impacts, including increased energy consumption and material use.
- Mitigation: Strategies to mitigate the environmental impact, such as using renewable energy sources and improving the efficiency of network operations, will be important.

• Interoperability:

- Legacy Systems: Ensuring compatibility with existing 4G and 5G networks, as well as future technologies, will be crucial for maintaining seamless communication and service continuity.
- Global Collaboration: Achieving interoperability will require global cooperation and alignment on standards and protocols.

References:

 $\underline{https://thesai.org/Publications/ViewPaper?Volume=11\&Issue=2\&Code=IJACSA\&SerialNo=81}$

https://link.springer.com/article/10.1007/s11277-022-09590-5

Software-Defined Networking (SDN)

Nithya Celestine (23mscs06)

SDN is an approach to network management that allows network administrators to manage network services through abstraction of lower-level functionality. It separates the network control plane from the data plane:

1. Control Plane vs. Data Plane:

- o **Control Plane:** Handles the routing decisions and network policies. In traditional networks, this is embedded in each network device.
- o **Data Plane:** Handles the actual forwarding of packets based on decisions made by the control plane.

In SDN, the control plane is centralized and typically managed by a software-based SDN controller. The data plane, consisting of network devices (like switches and routers), only focuses on packet forwarding based on instructions from the SDN controller.

2. SDN Components:

- o **SDN Controller:** The central unit that communicates with network devices via protocols such as OpenFlow. It manages network policies, traffic, and device configurations.
- o **Network Devices:** These are usually simpler, focusing on packet forwarding based on rules provided by the SDN controller.
- o **Southbound APIs:** These are protocols like OpenFlow used for communication between the SDN controller and network devices.
- o **Northbound APIs:** These APIs allow applications and services to interact with the SDN controller, enabling them to request network resources or influence network behavior.

3. Benefits of SDN:

- o **Centralized Control:** Simplifies network management and allows for more sophisticated network policies.
- o **Flexibility:** Network configurations can be adjusted dynamically based on demand or policy changes.
- o **Cost Efficiency:** Reduces the need for specialized hardware by allowing general-purpose hardware to perform complex functions.
- o **Enhanced Security:** Centralized control can help in implementing consistent security policies across the network.

Network Programmability

Network programmability extends the concept of SDN by allowing more fine-grained and flexible control over network behavior through programmable interfaces and automation:

1. Programmable Interfaces:

- o **APIs:** Application Programming Interfaces (APIs) allow developers to write custom programs or scripts to interact with the network infrastructure. This includes northbound APIs provided by SDN controllers.
- o **Configuration Management Tools:** Tools like Ansible, Puppet, or Chef can automate network configuration and management tasks.

2. Automation:

- Network Automation: This involves using scripts and tools to automatically configure, manage, and troubleshoot network devices and services. It helps in reducing manual intervention and improving efficiency.
- Service Chaining: Allows for the creation of complex network services by chaining multiple network functions together, dynamically adjusting based on the needs of applications.

3. Network Function Virtualization (NFV):

 NFV complements SDN by virtualizing network functions (such as firewalls, load balancers, etc.) and running them on commodity hardware. This enables dynamic provisioning and scaling of network services.

4. Benefits of Network Programmability:

- Enhanced Flexibility: Networks can be tailored to meet specific needs through custom scripts and applications.
- o **Reduced Operational Costs:** Automation reduces manual errors and operational overhead.
- Faster Deployment: New services and configurations can be rolled out more quickly.
- o **Improved Visibility and Analytics:** Programmable networks can integrate with monitoring and analytics tools for better insights.

In summary, SDN provides a framework for centralized control and management of network devices, while network programmability extends this concept by enabling detailed, automated control and customization of network behavior through programmable interfaces and automation tools. Together, they offer a powerful way to enhance network agility, efficiency, and responsiveness.

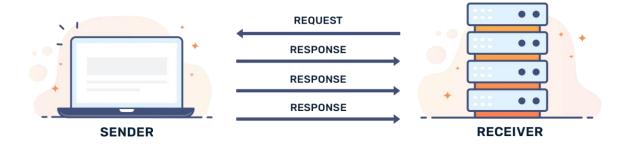
References:

https://www.bmc.com/blogs/software-defined-networking/

 $\underline{https://www.ibm.com/think/topics/sdn}$

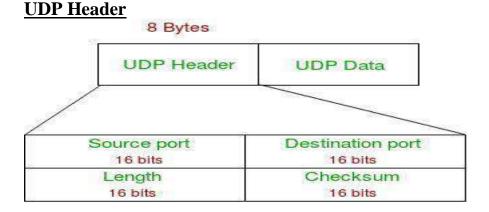
 $\underline{https://www.sdxcentral.com/networking/sdn/definitions/what-the-definition-of-software-\underline{defined-networking-sdn/}}$

User Datagram Protocol


AYESHA BANU (23MCA05)

The User Datagram Protocol (UDP) is simplest Transport Layer communication protocol available of the TCP/IP protocol suite. It involves minimum amount of communication mechanism. UDP is said to be an unreliable transport protocol but it uses IP services which provides best effort delivery mechanism.

In UDP, the receiver does not generate an acknowledgement of packet received and in turn, the sender does not wait for any acknowledgement of packet sent. This shortcoming makes this protocol unreliable as well as easier on processing.


UDP is commonly used in time-sensitive communications where occasionally dropping packets is better than waiting. Voice and video traffic are often sent using this protocol because they are both time-sensitive and designed to handle some level of loss.

USER DATAGRAM PROTOCOL (UDP)

Advantages of UDP

- **Speed:** UDP is faster than TCP because it does not have the overhead of establishing a connection and ensuring reliable data delivery.
- Lower latency: Since there is no connection establishment, there is lower latency and faster response time.
- **Simplicity:** UDP has a simpler protocol design than TCP, making it easier to implement and manage.
- **Broadcast support:** UDP supports broadcasting to multiple recipients, making it useful for applications such as video streaming and online gaming.
- **Smaller packet size:** UDP uses smaller packet sizes than TCP, which can reduce network congestion and improve overall network performance.
- User Datagram Protocol (UDP) is more efficient in terms of both latency and bandwidth.

UDP header contains four main parameters:

- Source Port: Source Port is a 2 Byte long field used to identify the port number of the source.
- <u>Destination Port:</u> It is a 2 Byte long field, used to identify the port of the destined packet.
- Length: Length is the length of UDP including the header and the data. It is a 16-bits field
- <u>Checksum:</u> Checksum is 2 Bytes long field. It is the 16-bit one's complement of the one's complement sum of the UDP header, the pseudo-header of information from the IP header, and the data, padded with zero octets at the end (if necessary) to make a multiple of two octets.

APPLICATIONS OF UDP

- Used for simple request-response communication when the size of data is less and hence there is lesser concern about flow and error control.
- UDP is used for some routing update protocols like **RIP** (Routing Information **Protocol**).
- Normally used for real-time applications which cannot tolerate uneven delays between sections of a received message.
- <u>VoIP (Voice over Internet Protocol)</u> services, such as Skype and WhatsApp, use UDP for real-time voice communication. The delay in voice communication can be noticeable if packets are delayed due to congestion control, so UDP is used to ensure fast and efficient data transmission.
- <u>DNS (Domain Name System)</u> also uses UDP for its query/response messages. DNS queries are typically small and require a quick response time, making UDP a suitable protocol for this application.
- <u>DHCP (Dynamic Host Configuration Protocol)</u> uses UDP to dynamically assign IP addresses to devices on a network. DHCP messages are typically small, and the delay caused by packet loss or retransmission is generally not critical for this application.

References:

https://www.fortinet.com/resources/cyberglossary/user-datagram-protocol-udp

 $\underline{https://www.techtarget.com/searchnetworking/definition/UDP-User-Datagram-Protocol}$

https://www.imperva.com/learn/ddos/udp-user-datagram-protocol/