JYOTI NIVAS COLLEGE AUTONOMOUS SYLLABUS FOR 2018 BATCH AND THEREAFTER

Programme: B.Sc. Semester: V

MATHEMATICS PAPER V

Course Code: 18VMA5 No. of Hours: 45

COURSE OBJECTIVES:

- Able to work independently and do in-depth study of various notions of mathematics.
- Seek to understand advances in various branches of mathematics.
- Able to explain the development of mathematics in its applications in other fields of sciences, economics and commerce.
- Able to solve problems using mathematical methods and numerical analysis.

LEARNING OUTCOMES:

- Understand the concepts like integral domains, fields, ideals and quotient rings.
- Understand the concept of ring homomorphism and isomorphism and their consequences.
- Learn about various interpolating and extrapolating methods.
- Apply various numerical methods in real life problems.
- Apply the quadrature formula to solve definite integrals.
- Determine and apply, the important quantities associated with scalar fields, such as partial derivatives of all orders, the gradient vector and directional derivative.
- Determine and apply, the important quantities associated with vector fields such as the divergence, curl, and Laplacian.

UNIT 1

CHAPTER 1 ALGEBRA V

15 HRS

Rings, Integral Domains, Fields

Rings, Types of Rings properties of rings – Rings of integers modulo n – Subrings – Ideals ,Principal, Prime and Maximal ideals in a commutative ring – examples and standard properties following the definition – Homomorphism, Isomorphism – Properties – Quotient rings – Integral Domain- Fields - properties following the definition – Fundamental Theorem of Homomorphism of Rings - Every field is an integral domain – Every finite integral domain is a field .

UNIT 2

CHAPTER 1 VECTOR DIFFERENTIAL CALCULUS

Differential Calculus of Scalar and Vector Fields: Scalar field – gradient of a scalar field, geometrical meaning – directional derivative – Maximum directional derivative – Angle between two surfaces - vector field – divergence and curl of a vector field – solenoidal and irrotational fields – scalar and vector potentials – Laplacian of a scalar field – vector identities. Standard properties, Problems.

UNIT 3

CHAPTER 1 NUMERICAL METHODS I

15 HRS

Finite differences – Definition and properties of Δ , ∇ and E, the relation between them – The nth differences of a polynomial. Newton –Gregory forward and backward interpolation formulae – Lagrange's and Newton's interpolation formulae for unequal intervals - Inverse interpolation. Numerical differentiation- Numerical Integration: Quadrature formula – deduce Trapezoidal rule -Simpson's 1/3 and 3/8 rule and problems.

PRACTICALS:

LIST OF PROBLEMS

- 1. Verify different types of rings.
- 2. Verify integral domains
- 3. Verify fields.
- 4. Verify subrings, ideals and subrings which are not ideals.
- 5. Demonstrate the physical interpretation of gradient, divergence and curl.
- 6. Obtain gradient, divergence, curl and Laplacian in cylindrical coordinates.
- 7. Programs on Interpolations with equal intervals.
- 8. Programs on Interpolations with unequal intervals.
- 9. Programs to evaluate integrals using Simpson's 1/3rd rule
- 10.Programs to evaluate integrals using Simpson's 1/8th rule

REFERENCES:

- 1. B Spain, Vector Analysis, ELBS, 1994.
- 2. G B Thomas and R L Finney, *Calculus and analytical geometry, Pearson Publications*, 2006.
- 3. John B Fraleigh, *A First course in Abstract Algebra*, 3rd ed.: Narosa Publishing House., 2003.
- 4. R Balakrishan and N.Ramabadran, *A Textbook of Modern Algebra*, 1st ed. New Delhi, India: Vikas publishing house pvt. Ltd., 1991.
- 5. S S Sastry, *Introductory methods of Numerical Analysis*, Prentice Hall of India, 2012.

6. Shanthi Narayan and P K Mittal, *Differential Calculus*, Reprint. New Delhi: S Chand and Co. Pvt. Ltd., 2014.