JYOTI NIVAS COLLEGE AUTONOMOUS SYLLABUS FOR 2018 BATCH AND THEREAFTER

Programme: B.C.A
Semester: III

GRAPH THEORY AND OPERATIONS RESEARCH

Course Code: 18BCAIIIT3

No. of Hours: 60

COURSE OBJECTIVES:

- To inquire and understand wide range of concepts in mathematics.
- To understand basic properties of Graphs as discrete structures and able to solve in real life problems.
- To understand the method of problem solving in decision making using operations research.
- To impart knowledge in concepts and tools of Operations Research
- To understand mathematical models used in maximization and minimization techniques.
- To apply the O.R techniques to make effective decisions in business.

LEARNING OUTCOMES:

- Clear understanding of the concepts of different graph, their properties and the observations made by their matrix representation of graphs.
- Able to solve shortest path problems graph algorithms.
- Able to model a real life problem into a Linear Programming Problem
- To solve specialized Linear Programming problems like the transportation and assignment problems.

UNIT I
30 HRS
Graph theory

1. Introduction: What is a Graph?, Application of Graphs, finite and Infinite Graphs, Incidence and Degree, Isolated Vertex, Pendant Vertex and Null Graph.
2.Paths and Circuits : Isomorphism, subgraphs, A Puzzle with multicolored cubes, Walks, Paths and Circuits, Connected Graphs, Disconnected Graphs, and components, Euler Graphs, Operation on Graphs, Hamiltonian Paths and Circuits, the Traveling Salesman Problem.
2. Trees and fundamental circuits : Trees, Some Properties of Trees, Pendant Vertices in a Tree, Distance and Centers in a Tree, Rooted and Binary Trees, Spanning Trees, Fundamental Circuits, Finding all spanning trees of a graph, Spanning Trees in a Weighted Graph.
3. Cut-Set and Cut-Vertices: Cut-sets, Connectivity and Separability.
5.Matrix Representation of Graphs:Incidence Matrix, Circuit Matrix, Path matrix, Adjacency Matrix.
6.Coloring,: Chromatic Number, chromatic Partitioning, chromatic Polynomial.
4. Graph Theoretic Algorithms: Directed circuits, Shortest- Path Algorithm- shortest path from Specified Vertex to another specified vertex- Shortest path between all pairs of Vertices.

Linear programming - Introduction, Formulation of a LPP, Graphical and Simplex methods of solving a LPP, Concept of duality- obtaining a dual problem for the given primal.
Transportation problem - Introduction, finding an Initial basic feasible solution using North West corner Rule, Row Minima method and column minima method, Vogel's approximation method, Obtaining an optimum solution by MODI method.
Assignment problems - Introduction, Formulation, Hungarian method, Travelling salesman problem.

REFERENCES:

1. Narsingh Deo. Graph theory with Applications to Engineering and Computer Science, 1974.
2. L.S. Srinath. Linear Programming. (East -West) , New Delhi .First Edition.
3. Hillier and Leiberma. Operations Research. Tata McGraw Hill . VIII Edition, 2005.
4. S.D.Sharma. Operations Research. Kedar Nath RamNath\&Co .VII Edition, 1985.
5. J.K.Sharma. Operations Research ,Theory and Application. Macmillan India Ltd.

ThirdEdition.

