JYOTI NIVAS COLLEGE AUTONOMOUS SYLLABUS FOR 2018 BATCH AND THEREAFTER

Programme: B.C.A

Semester: III

COMPUTER GRAPHICS

Course Code: 18BCAIIIT5

No. of Hours: $\mathbf{6 0}$

COURSE OBJECTIVES:

- To introduce the components of a graphics system and become familiar with building approach of graphics system components and algorithms related with them.
- To understand 2 Dimensional and 3 Dimensional computer graphics concepts.
- To provide an understanding to the basic geometrical primitives and transformation of geometrical shapes.
- Provide an understanding of mapping from a world coordinates to device coordinates, clipping, and projections.
- To make students understand how to implement the computer graphics concepts using OpenGl.

LEARNING OUTCOMES:

- To implement various algorithms to scan, convert the basic geometrical primitives, transformations and clipping.
- To define the fundamentals of animation, graphic design and its related technologies.
- To describe the importance of viewing and projections.
- To implement Computer Graphics concepts using OpenGl.

UNIT- I
11 HRS
Overview of Graphics Systems: Graphics applications-CAD, Computer art, Education \& Training, Entertainment, Visualization, Image Processing
Video display devices -Cathode Ray Tube, Raster-scan displays, Random-scan displays, color CRT monitors - Beam penetration, shadow mask, Flat panel displays - plasma panel, LCD. Graphics Workstation \& Viewing system, Interactive Input devices, Hard copy devices.
Introduction to OpenGL - syntax, related libraries, header files, display window management using GLUT.

UNIT - II
11 HRS
Graphics Output Primitives: 2 Dimensional world coordinate reference frame in openGL, openGL - point function, Line functions, Polygon Fill - Area functions, character function.
Line drawing Algorithm-DDA and Bresenham's, Circle drawing Algorithm-DDA and midpoint, Attributes of Graphics Primitives - color and gray scale, OpenGL- Color functions, Point attributes, Line attributes, Fill area attributes, Character attributes.

Geometric Transformations: Basic 2 Dimensional transformation - translation,rotation and scaling, Matrix representation and homogenous coordinates, Inverse transformation, Composite translate, rotation and scaling, general 2D pivot point rotation, general 2Dfixed point scaling. OpenGL functions for 2-D geometric transformation.

UNIT- IV
14 HRS
Two-Dimensional Viewing:2 D viewing pipeline, clipping window, Normalization and viewport transformations. OpenGL-2 D viewing functions.
2 D Clipping - Point clipping, Line clipping-Cohen Sutherland Line clipping, Nicholl-LeeNicholl line clipping, Polygon clipping - Sutherland Hodgeman polygon clipping, WeilerAtherton polygon clipping, Text clipping.
Interactive Input Methods and GUI: Logical classification of Input devices, Input functions for graphical data, Interactive Picture Construction techniques.

UNIT -V
12 HRS
Three Dimensional Viewing and Computer animation:3 Dimensional Viewing: Overview of 3 D viewing concepts, 3D viewing pipelining, three dimensional geometric TransformationsTranslation, Rotation and Scaling, Visible surface detection methods - Back face detection, Depth buffer method, Octrees methods, ray casting method.
Computer Animation: Raster methods for Computer Animation, Design of Animation Sequences, Motion specifications, Periodic motions.
OpenGL Animation Procedures.

REFERENCES:

1. Computer Graphics with OpenGL, Donald Hearn and M. Pauline Baker :Pearson Education, Fourth Edition 2018
2. Edward Angel - "Interactive Computer Graphics - A Top-down Approach using OpenGL", Pearson Education, $5^{\text {th }}$ Edition 2009
