JYOTI NIVAS COLLEGE AUTONOMOUS SYLLABUS FOR 2018 BATCH AND THEREAFTER

Programme: B.Sc. Semester: I

MATHEMATICS PAPER I

Course Code: 18IMA1 No. of Hours: 60

COURSE OBJECTIVES:

- Capable of inquiring and understanding wide range of concepts in mathematics.
- Able to solve linear system of equations, differential and integral calculus problems
- Able to develop codes using FOSS to solve all mathematical problems

LEARNING OUTCOMES:

- Solve a system of linear equations by row-reducing its augmented form
- Explain the significance of eigenvectors and Eigen values and compute them
- Find the nth derivatives of functions.
- Apply the Leibnitz's theorem for finding nth derivative of product of two functions.
- Relate and integrate geometry into real life contexts as well as into other disciplines

UNIT 1

CHAPTER 1 ALGEBRA I

15 HRS

Matrices: Elementary row and column transformations (operations), equivalent matrices. Row- reduced echelon form, Normal form of a matrix, Rank of a matrix, Problems. Homogeneous and Non – Homogeneous systems of m linear equations in n unknowns consistency criterion – criterion for uniqueness of solutions. Eigen values and Eigen vectors of a square matrix of order 2 and 3, standard properties, Cayley-Hamilton theorem (without proof). Finding A^{-1} , A^{-2} and A^{2} , A^{3} , A^{4}

UNIT 2

CHAPTER 1 DIFFERENTIAL CALCULUS I

20 HRS

Differential Calculus Successive Differentiation - n^{th} derivatives of the functions: e^{ax} , $(ax + b)^n$, log(ax + b), sin(ax + b), cos(ax + b), $e^{ax} sin(bx + c)$, $e^{ax} cos(bx + c)$ - Problems. Leibnitz theorem (with proof) and its applications.

Partial differentiation –Function of two and three variables - First and higher derivatives - Homogeneous functions – derivatives- Euler's theorem and its extension (with proof) - Total derivative and differential - Differentiation of implicit functions and composite functions – Problems - Jacobians – Properties of Jacobians problems.

CHAPTER 2 INTEGRAL CALCULUS I

10 HRS

Reduction formulae for $\int \sin^n x \, dx$, $\int \cos^n x \, dx$, $\int \tan^n x \, dx$, $\int \cot^n x \, dx$, $\int \sec^n x \, dx$, $\int \csc^n x \, dx$, $\int \sin^n x \cos^m x \, dx$, definite integrals of the above with appropriate limits.

UNIT 3

CHAPTER 1 ANALYTICAL GEOMETRY OF THREE DIMENSIONS I 10 HRS

Recapitulation: straight lines and planes. Equation of the sphere in general and standard forms - equation of a sphere with given ends of a diameter. Tangent plane for Sphere – Orthogonal Spheres.

CHAPTER 2 ANALYTICAL GEOMETRY OF THREE DIMENSIONS II 5 HRS

Standard equations of right circular cone and right circular cylinder.

(Questions from recapitulation will not be asked)

PRACTICALS:

LIST OF PROBLEMS

- 1. Introduction to python and commands connected with matrices.
- 2. Computations with matrices.
- 3. Row reduced echelon form and normal form.
- 4. Establishing consistency or otherwise and solving system of linear equations.
- 5. Introduction to and commands for derivatives and nth derivatives.
- 6. Commands for plotting functions.
- 7. nthderivative without Leibnitz rule.
- 8. nth derivative with Leibnitz rule.
- 9. Obtaining partial derivative of some standard functions
- 10. Verification of Euler's theorem, its extension and Jacobian.
- 11. Commands for reduction formula with or without limits.
- 12. Implementing vector form of line.
- 13. Implementing vector form of plane.

REFERENCES:

- 1. B S Vatssa, *Theory of Matrices*, New Delhi: New Age International Publishers, 2005.
- 2. Frank Ayres and Elliott Mendelson, *Schaum's Outline of Calculus*, 5th ed. USA: Mc. Graw Hill., 2008.
- 3. G B Thomas and R L Finney, Calculus and analytical geometry, Narosa Publishing House, Sixth Edition, Thirteenth reprint, 1998

- 4. J Edwards, An elementary treatise on the differential calculus: with applications and numerous example, Reprint. Charleston, USA: Biblio Bazaar, 2010.
- 5. N P Bali, Differential Calculus, India: Laxmi Publications (P) Ltd.., 2010.
- 6. Ram Krishna Ghosh and Kantish Chandra Maity, An Introduction to Analysis, Integral Calculus, New Central Book Agency, Twelfth Edition, 2012
- 7. S Narayanan & T. K. Manicavachogam Pillay, *Calculus*.: S. Viswanathan Pvt. Ltd., vol. I & II 2016.
- 8. Thomas's Calculus, Pearson India, Twelfth Edition, 2017